

Written and Manipulatives Policy

Signed: Date:
Chair of Governors

Signed: \qquad
Headteacher

Adopted and Approved by the Governing Body: October 2023
Review Date: October 2027

Written Manipulatives Calculation Policy

The intent of our Mathematics curriculum is to be accessible to all and to maximise the development of every child's ability and academic achievement. Every child has an equal opportunity to access maths at their level and pace and this is catered for through differentiation to enhance a safe learning environment. We want children to make rich connections across Mathematical ideas to develop fluency, reasoning and problem solving and their taught resilience will enhance and develop these skills. Within (and beyond) lessons, children are challenged with "next steps" and extensions, creating a culture, where, within lessons, our learners want to be ambitious in all that they access and achieve. Our pupils will learn to apply their Mathematical knowledge not only within their Mathematics lessons but also across the curriculum, for example in Art, Science, Geography and DT. We want our pupils to understand that a confident understanding of Mathematics is the bedrock for Science, Technology and Engineering (STEM), necessary for the management of every day finances and a crucial component of most forms of employment. As our pupils progress, we intend that they: be able to calculate swiftly and accurately; have the ability to reason mathematically; have an appreciation of the beauty and power of mathematics and a sense of enjoyment and curiosity about the subject.

							21.313 \qquad $1 \quad 1$
Y6	Solve multi-step problems in contexts, deciding which operations/methods to use and why. Decimals up to 3dp (Context: Measures)	Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.	Use knowledge of the order of operations to carry out calculations. involving subtraction.	Solve problems which require answers to be rounded to specified degrees of accuracy. [Fractions] Solve problems involving the calculation and conversion of units of measure, using decimal notation to 3dp where appropriate. [Measurement]		Compact vertical using p	lue counters

	Statutory Expectations	MULTIPLICATION			
YR	Children ... sotve problems, including doubling, halving and sharing. [Expected] Solve practical problems that involve combining groups of 2/5/10. [Exceeding]	Practical/ recorded using ICT (e.g. digital photos / pictures on IWB) How many 10p coins are here? How much money is that? This domino is a double 4. How many spots does it have?	Pictures/Objects How many socks in three pairs?		Symbolic 3 pairs, 2 socks in each pair:

Y1	Solve one-step problems using concrete objects, pictorial representations and arrays (with the support of the teacher)	Practical/recorded using ICT Pictures/Symbotic There are five cakes in each bag. How many cakes are there in three harac?	Double sided counters, Using numicon number line to solve repeated addition problems by laying pieces upon track.	Visual (eg modelled using bead strings/double sided couters) 5×3 or 3×5 [two, three times] or [three groups of two] 00000-00000-00000 0 5 10 15 Bar model	Arrays 5×2 or 2×5
Y2	Calculate statements for multiplication within the multiplication tables and write them using the multiplication and equals signs. [Show multiplication of two numbers can be done in any order.]	Pictures/Symbotic There are four apples in each box. How many apples in six boxes	Pupils use a variety of language to describe multiplication. Bar model		Arrays Real life arrays e.g. egg boxes. 6×4 or 4×6

		Bar model				
Y6	Multi-digit numbers (up to 4 digits) \times TU whole number using the formal method of long multiplication. Multiply one-digit numbers with up to two decimal places by whote numbers.	Apply knowledge of patterns to unrintims, alf nlare.		$\begin{aligned} & 4.7 \times 8=37.6 \\ & \text { (estimate } 5 \times 8=40 \text {) } \\ & \times \frac{4.7}{\frac{87.6}{5}} \end{aligned}$ [O r 47×8, then divide the solution by 10.] Bar model	$5.65 \times 9=50.85$ (estimate $6 \times 9=54$) [Or compute 565×9, then divide the solution by 100.]	Use a variety of images to support understanding of x with fractions. Use understanding of relationship between unit fractions and \div to work backwards by x a quantity that represents a unit fraction to find the whote quantity (eg if $\frac{1}{4}$ of a length is 36 cm , whole length $36 \times 4=144 \mathrm{~cm}$). x numbers with up to $2 d p$ by U/TU whote numbers (starting with simplest cases e.g. $0.4 \times 2=0.8$, and in practical contexts).
		[NB See Y5 method]				

	Statutory Expectations	DIVISION			
YR	Children ... solve problems, including doubling, halving and sharing. [Expected] They solve practical problems that involve sharing into equal groups. [Exceeding]	Practical/recorded using ICT (e.g. digital photos/pictures on IWB) Pic 6 c Sharing should only be used briefly as a precursor to grouping, which is a more preferable method and should be moved on to as soon as possible. Solving division by grouping strengthens mental calcalation strategies. $\quad 6$ cater \quad.	Pictures/Objects 6 cakes, shared between 2 6 cakes put into groups of 2 (in $\%$ in	Symbotic 6 cakes shared between 2	There are 8 raisins. Take half of them. How many do you have? Share the 10 grapes between 2 people.
Y1	Solve one-step problems using concrete objects, pictorial representations and arrays (with the support of the teacher)	Practical/recorded using ICT There are 14 people on the bus. Half of them get off. How many remain on the bus? There are 20 people in the class. One quarter are boys. How many boys are there?	Pictures/Symbolic How many apples in each bowt if I share 12 apples between 3 bowls? 	Visual (modelled using bead strings) $15 \div 5=3$	 10 15 Double sided counters

Y5	Use the formal written method of short division (interpret remainders appropriately for the context). HTO $\div 0$ ThHTO $\div 0$ Convert between units of measure (eg $\mathrm{km} / \mathrm{m} ; \mathrm{m} / \mathrm{cm}$; $\mathrm{cm} / \mathrm{mm} ; \mathrm{kg} / \mathrm{g} ;$ litre and ml)	Bar model Double sided counters, cubes		$\begin{aligned} 8520 \div 6= & 1420 \\ & 6 \left\lvert\, \begin{array}{r} 1420 \\ \hline 8^{2} 520 \end{array}\right. \end{aligned}$	Pupils connect x by a fraction to using fractions as operators (fractions off), and to \div. This relates to scaling by simple fractions, incl. those >1. Find fractions of numbers and quantities, writing remainders as a fraction.
Y6	Divide numbers (up to 4 digits) by TO whole number using the formal method of short/long division (interpret as approp. for the context). Use written division methods in cases where the and has up to 2dp. [Divide numbers up to 2dp by O/TO whole numbers.]	Bar model Double sided counters, cubes.	$43.68 \div 7=6.24$ (estimate: $42 \div 7=6$) [Or compute $4368 \div 7$, then divide the solution by 100.] $\begin{array}{r} 6.24 \\ 7 \longdiv { 4 3 . 6 ^ { 2 3 } } \end{array}$	$496 \div 11$ (estimate $500 \div 10=50$) $\begin{array}{llll} & & & \\ & 1 & 5 \quad 5 \quad r 1 \\ 4 & 9{ }^{5} 6\end{array}$ Answer: $45 \frac{1}{11}$	$\begin{array}{ccccc} \hline 432 \div 15= & \\ & & & & \\ \hline \end{array}$

